3.200 \(\int \frac{(a+a \sin (e+f x))^m (A+B \sin (e+f x))}{c-c \sin (e+f x)} \, dx\)

Optimal. Leaf size=123 \[ \frac{2^{m+\frac{1}{2}} (A m+B m+B) \sec (e+f x) (\sin (e+f x)+1)^{\frac{1}{2}-m} (a \sin (e+f x)+a)^m \, _2F_1\left (-\frac{1}{2},\frac{1}{2}-m;\frac{1}{2};\frac{1}{2} (1-\sin (e+f x))\right )}{c f m}-\frac{B \sec (e+f x) (a \sin (e+f x)+a)^{m+1}}{a c f m} \]

[Out]

(2^(1/2 + m)*(B + A*m + B*m)*Hypergeometric2F1[-1/2, 1/2 - m, 1/2, (1 - Sin[e + f*x])/2]*Sec[e + f*x]*(1 + Sin
[e + f*x])^(1/2 - m)*(a + a*Sin[e + f*x])^m)/(c*f*m) - (B*Sec[e + f*x]*(a + a*Sin[e + f*x])^(1 + m))/(a*c*f*m)

________________________________________________________________________________________

Rubi [A]  time = 0.303142, antiderivative size = 123, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 36, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.139, Rules used = {2967, 2860, 2689, 70, 69} \[ \frac{2^{m+\frac{1}{2}} (A m+B m+B) \sec (e+f x) (\sin (e+f x)+1)^{\frac{1}{2}-m} (a \sin (e+f x)+a)^m \, _2F_1\left (-\frac{1}{2},\frac{1}{2}-m;\frac{1}{2};\frac{1}{2} (1-\sin (e+f x))\right )}{c f m}-\frac{B \sec (e+f x) (a \sin (e+f x)+a)^{m+1}}{a c f m} \]

Antiderivative was successfully verified.

[In]

Int[((a + a*Sin[e + f*x])^m*(A + B*Sin[e + f*x]))/(c - c*Sin[e + f*x]),x]

[Out]

(2^(1/2 + m)*(B + A*m + B*m)*Hypergeometric2F1[-1/2, 1/2 - m, 1/2, (1 - Sin[e + f*x])/2]*Sec[e + f*x]*(1 + Sin
[e + f*x])^(1/2 - m)*(a + a*Sin[e + f*x])^m)/(c*f*m) - (B*Sec[e + f*x]*(a + a*Sin[e + f*x])^(1 + m))/(a*c*f*m)

Rule 2967

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[a^m*c^m, Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m)*(A + B
*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && I
ntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] && GtQ[n, 0]) || LtQ[0, n, m] || LtQ[m, n, 0]))

Rule 2860

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)]), x_Symbol] :> -Simp[(d*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m)/(f*g*(m + p + 1)), x]
+ Dist[(a*d*m + b*c*(m + p + 1))/(b*(m + p + 1)), Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^m, x], x] /; Fre
eQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && NeQ[m + p + 1, 0]

Rule 2689

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[(a^2*
(g*Cos[e + f*x])^(p + 1))/(f*g*(a + b*Sin[e + f*x])^((p + 1)/2)*(a - b*Sin[e + f*x])^((p + 1)/2)), Subst[Int[(
a + b*x)^(m + (p - 1)/2)*(a - b*x)^((p - 1)/2), x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, g, m, p}, x] &&
 EqQ[a^2 - b^2, 0] &&  !IntegerQ[m]

Rule 70

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Dist[(c + d*x)^FracPart[n]/((b/(b*c - a*d)
)^IntPart[n]*((b*(c + d*x))/(b*c - a*d))^FracPart[n]), Int[(a + b*x)^m*Simp[(b*c)/(b*c - a*d) + (b*d*x)/(b*c -
 a*d), x]^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] &&
(RationalQ[m] ||  !SimplerQ[n + 1, m + 1])

Rule 69

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*Hypergeometric2F1[
-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-(d/(b*c - a*d)), 0]))

Rubi steps

\begin{align*} \int \frac{(a+a \sin (e+f x))^m (A+B \sin (e+f x))}{c-c \sin (e+f x)} \, dx &=\frac{\int \sec ^2(e+f x) (a+a \sin (e+f x))^{1+m} (A+B \sin (e+f x)) \, dx}{a c}\\ &=-\frac{B \sec (e+f x) (a+a \sin (e+f x))^{1+m}}{a c f m}+\frac{(B+A m+B m) \int \sec ^2(e+f x) (a+a \sin (e+f x))^{1+m} \, dx}{a c m}\\ &=-\frac{B \sec (e+f x) (a+a \sin (e+f x))^{1+m}}{a c f m}+\frac{\left (a (B+A m+B m) \sec (e+f x) \sqrt{a-a \sin (e+f x)} \sqrt{a+a \sin (e+f x)}\right ) \operatorname{Subst}\left (\int \frac{(a+a x)^{-\frac{1}{2}+m}}{(a-a x)^{3/2}} \, dx,x,\sin (e+f x)\right )}{c f m}\\ &=-\frac{B \sec (e+f x) (a+a \sin (e+f x))^{1+m}}{a c f m}+\frac{\left (2^{-\frac{1}{2}+m} a (B+A m+B m) \sec (e+f x) \sqrt{a-a \sin (e+f x)} (a+a \sin (e+f x))^m \left (\frac{a+a \sin (e+f x)}{a}\right )^{\frac{1}{2}-m}\right ) \operatorname{Subst}\left (\int \frac{\left (\frac{1}{2}+\frac{x}{2}\right )^{-\frac{1}{2}+m}}{(a-a x)^{3/2}} \, dx,x,\sin (e+f x)\right )}{c f m}\\ &=\frac{2^{\frac{1}{2}+m} (B+A m+B m) \, _2F_1\left (-\frac{1}{2},\frac{1}{2}-m;\frac{1}{2};\frac{1}{2} (1-\sin (e+f x))\right ) \sec (e+f x) (1+\sin (e+f x))^{\frac{1}{2}-m} (a+a \sin (e+f x))^m}{c f m}-\frac{B \sec (e+f x) (a+a \sin (e+f x))^{1+m}}{a c f m}\\ \end{align*}

Mathematica [C]  time = 25.6499, size = 7409, normalized size = 60.24 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[((a + a*Sin[e + f*x])^m*(A + B*Sin[e + f*x]))/(c - c*Sin[e + f*x]),x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [F]  time = 0.296, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( a+a\sin \left ( fx+e \right ) \right ) ^{m} \left ( A+B\sin \left ( fx+e \right ) \right ) }{c-c\sin \left ( fx+e \right ) }}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(f*x+e))^m*(A+B*sin(f*x+e))/(c-c*sin(f*x+e)),x)

[Out]

int((a+a*sin(f*x+e))^m*(A+B*sin(f*x+e))/(c-c*sin(f*x+e)),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\int \frac{{\left (B \sin \left (f x + e\right ) + A\right )}{\left (a \sin \left (f x + e\right ) + a\right )}^{m}}{c \sin \left (f x + e\right ) - c}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^m*(A+B*sin(f*x+e))/(c-c*sin(f*x+e)),x, algorithm="maxima")

[Out]

-integrate((B*sin(f*x + e) + A)*(a*sin(f*x + e) + a)^m/(c*sin(f*x + e) - c), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{{\left (B \sin \left (f x + e\right ) + A\right )}{\left (a \sin \left (f x + e\right ) + a\right )}^{m}}{c \sin \left (f x + e\right ) - c}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^m*(A+B*sin(f*x+e))/(c-c*sin(f*x+e)),x, algorithm="fricas")

[Out]

integral(-(B*sin(f*x + e) + A)*(a*sin(f*x + e) + a)^m/(c*sin(f*x + e) - c), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \frac{\int \frac{A \left (a \sin{\left (e + f x \right )} + a\right )^{m}}{\sin{\left (e + f x \right )} - 1}\, dx + \int \frac{B \left (a \sin{\left (e + f x \right )} + a\right )^{m} \sin{\left (e + f x \right )}}{\sin{\left (e + f x \right )} - 1}\, dx}{c} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))**m*(A+B*sin(f*x+e))/(c-c*sin(f*x+e)),x)

[Out]

-(Integral(A*(a*sin(e + f*x) + a)**m/(sin(e + f*x) - 1), x) + Integral(B*(a*sin(e + f*x) + a)**m*sin(e + f*x)/
(sin(e + f*x) - 1), x))/c

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int -\frac{{\left (B \sin \left (f x + e\right ) + A\right )}{\left (a \sin \left (f x + e\right ) + a\right )}^{m}}{c \sin \left (f x + e\right ) - c}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^m*(A+B*sin(f*x+e))/(c-c*sin(f*x+e)),x, algorithm="giac")

[Out]

integrate(-(B*sin(f*x + e) + A)*(a*sin(f*x + e) + a)^m/(c*sin(f*x + e) - c), x)